
CMSC 341

Lecture 5 Asymptotic Analysis

Based on slides from Prof; Gibson, previous iterations of CMSC 341, and textbook

Today’s Topics

 Review

 Mathematical properties

 Proof by induction

 Program complexity

 Growth functions

 Big O notation

UMBC CMSC 341 Asymptotic Analysis 2

Mathematical Properties

3

Why Review Mathematical Properties?

 You will be solving complex problems

 That use division and power

 These mathematical properties will help you

solve these problems more quickly

 Exponents

 Logarithms

 Summations

 Mathematical Series

UMBC CMSC 341 Asymptotic Analysis 4

Exponents

 Shorthand for multiplying a number by itself

 Several times

 Used in identifying sizes of memory

 Help to determine the most efficient way to

write a program

UMBC CMSC 341 Asymptotic Analysis 5

Exponent Identities

xaxb = x(a+b)

xaya = (xy)a

(xa)b = x(ab)

x(a-b) = (xa)/(xb)

x(-a) = 1/(xa)

x(a/b) = (xa) = √xa

UMBC CMSC 341 Asymptotic Analysis 6

1

b b

Exponent Identities

xaxb = x(a+b)

xaya = (xy)a

(xa)b = x(ab)

x(a-b) = (xa)/(xb)

x(-a) = 1/(xa)

x(a/b) = (xa) = √xa

UMBC CMSC 341 Asymptotic Analysis 7

1

b b

Logarithms

 ALWAYS base 2 in Computer Science

 Unless stated otherwise

 Used for:

 Conversion between numbering systems

 Determining the mathematical power needed

 Definition:

 n = logax if and only if an = x

UMBC CMSC 341 Asymptotic Analysis 8

Logarithm Identities

logb(1) = 0

logb(b) = 1

logb(x*y) = logb(x) + logb(y)

logb(x/y) = logb(x) - logb(y)

logb(x
n) = n*logb(x)

logb(x) = logb(c) * logc(x)

= logc(x) / logc(b)

UMBC CMSC 341 Asymptotic Analysis 9

Logarithm Identities

logb(1) = 0

logb(b) = 1

logb(x*y) = logb(x) + logb(y)

logb(x/y) = logb(x) - logb(y)

logb(x
n) = n*logb(x)

logb(x) = logb(c) * logc(x)

= logc(x) / logc(b)

UMBC CMSC 341 Asymptotic Analysis 10

Summations

 The addition of a sequence of numbers

 Result is their sum or total

 Can break a function into several summations

UMBC CMSC 341 Asymptotic Analysis 11

Proof by Induction

12

Proof by Induction

 A proof by induction is just like an ordinary

proof

 In which every step must be justified

 However, it employs a neat trick:

 You can prove a statement about an arbitrary

number n by first proving

 It is true when n is 1 and then

Assuming it is true for n=k and

Showing it is true for n=k+1

UMBC CMSC 341 Asymptotic Analysis 13

Proof by Induction Example

 Let’s say you want to show that you can

climb to the nth floor of a fire escape

 With induction, need to show that:

 They can climb the ladder up to the fire

escape (n = 0)

 They can climb the first flight of stairs (n = 1)

 Then we can show that you can climb the

stairs from any level of the fire escape

(n = k) to the next level (n = k + 1)

UMBC CMSC 341 Asymptotic Analysis 14

Program Complexity

15

What is Complexity?

 How many resources will it take to solve a

problem of a given size?

 Time (ms, seconds, minutes, years)

 Space (kB, MB, GB, TB, PB)

 Expressed as a function of problem size

(beyond some minimum size)

UMBC CMSC 341 Asymptotic Analysis 16

Increasing Complexity

 How do requirements grow as size grows?

 Size of the problem

 Number of elements to be handled

 Size of thing to be operated on

UMBC CMSC 341 Asymptotic Analysis 17

Determining Complexity: Experimental

 Write a program implementing the algorithm

 Run the program with inputs of varying size

and composition

 Use a method like clock()

to get an accurate

measure of the actual

running time

 Plot the results

UMBC CMSC 341 Asymptotic Analysis 18

Limitations of Experimental Method

 What are some limitations of this approach?

 Must implement algorithm to be tested

 May be difficult

 Results may not apply to all possible inputs

 Only applies to inputs explicitly tested

 Comparing two algorithms is difficult

 Requires same hardware and software

UMBC CMSC 341 Asymptotic Analysis 19

Determining Complexity: Analysis

 Theoretical analysis solves these problems

 Use a high-level description of the algorithm

 Instead of an implementation

 Run time is a function of the input size, n

 Take into account all possible inputs

 Evaluation is independent of specific

hardware or software

 Including compiler optimization

UMBC CMSC 341 Asymptotic Analysis 20

Using Asymptotic Analysis

 For an algorithm:

 With input size n

 Define the run time as T(n)

 Purpose of asymptotic analysis is to

examine:

 The rate of growth of T(n)

 As n grows larger and larger

UMBC CMSC 341 Asymptotic Analysis 21

Growth Functions

22

Seven Important Functions

 Constant  1

 Logarithmic  log n

 Linear  n

 N-Log-N  n log n

 Quadratic  n2

 Cubic  n3

 Exponential  2n

UMBC CMSC 341 Asymptotic Analysis 23

Constant and Linear

 Constant

 T(n) = c

 Getting array element at known location

 Any simple C++ statement (e.g. assignment)

 Linear

 T(n) = cn [+ any lower order terms]

 Finding particular element in array of size n

 Sequential search

 Trying on all of your n shirts

UMBC CMSC 341 Asymptotic Analysis 24

“c” is a constant value, like 1

Quadratic and Polynomial

 Quadratic

 T(n) = cn2 [+ any lower order terms]

 Sorting an array using bubble sort

 Trying all your n shirts with all your n pants

 Polynomial

 T(n) = cnk [+ any lower order terms]

 Finding the largest element of a k-dimensional array

 Looking for maximum substrings in array

UMBC CMSC 341 Asymptotic Analysis 25

Exponential and Logarithmic

 Exponential

 T(n) = cn [+ any lower order terms]

 Constructing all possible orders of array elements

 Towers of Hanoi (2n)

 Recursively calculating nth Fibonacci number (2n)

 Logarithmic

 T(n) = lg n [+ any lower order terms]

 Finding a particular array element (binary search)

 Algorithms that continually divide a problem in half

UMBC CMSC 341 Asymptotic Analysis 26

Graph of Growth Functions

UMBC CMSC 341 Asymptotic Analysis 27

Graph of Growth Functions

UMBC CMSC 341 Asymptotic Analysis 28

logarithmic

linear quadratic

n-log-n cubic

exponential

Expanded Growth Functions Graph

UMBC CMSC 341 Asymptotic Analysis 29

Asymptotic Analysis

30

Simplification

 We are only interested in the growth rate as

an “order of magnitude”

 As the problem grows really, really, really large

 We are not concerned with the fine details

 Constant multipliers are dropped

 If T(n) = c*2n, we reduce it to T(n) = 2n

 Lower order terms are dropped

 If T(n) = n4 + n2, we reduce it to T(n) = n4

UMBC CMSC 341 Asymptotic Analysis 31

Three Cases of Analysis

 Best case

 When input data minimizes the run time

 An array that needs to be sorted is already in order

 Average case

 The “run time efficiency” over all possible inputs

 Worst case

 When input data maximizes the run time

 Most adversarial data possible

UMBC CMSC 341 Asymptotic Analysis 32

Analysis Example: Mileage

 How much gas does it take to go 20 miles?

 Best case

 Straight downhill, wind at your back

 Average case

 “Average” terrain

 Worst case

 Winding uphill gravel road, inclement weather

UMBC CMSC 341 Asymptotic Analysis 33

Analysis Example: Sequential Search

 Consider sequential search on an unsorted

array of length n, what is the time complexity?

 Best case

 Worst case

 Average case

UMBC CMSC 341 Asymptotic Analysis 34

Comparison of Two Algorithms

 Insertion sort:

 (n2)/4

 Merge sort:

 2nlgn

 n = 1,000,000

 Million ops per second

 Merge takes 40 secs

 Insert takes 70 hours

UMBC CMSC 341 Asymptotic Analysis 35

Source: Matt Stallmann, Goodrich and Tamassia slides

Big O Notation

36

What is Big O Notation?

 Big O notation has a special meaning in

Computer Science

 Used to describe the complexity (or

performance) of an algorithm

 Big O describes the worst-case scenario

 Big Omega (Ω) describes the best-case

 Big Theta (Θ) is used when the best and

worst case scenarios are the same

UMBC CMSC 341 Asymptotic Analysis 37

Big O Definition

 We say that f(n) is O(g(n)) if

 There is a real constant c > 0

 And an integer constant n0 ≥ 1

 Such that

 f(n) ≤ c*g(n), for n ≥ n0

 Let’s do an example

 Taken from https://youtu.be/ei-A_wy5Yxw

UMBC CMSC 341 Asymptotic Analysis 38

Big O: Example – n4

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n4)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 We’ll start with c = 1

UMBC CMSC 341 Asymptotic Analysis 39

n0 4n2 + 16n + 2 ≤ c*n4

0 2 > 0

1 22 > 1

2 50 > 16

3 86 > 81

4 130 < 256

Big O: Example – n4

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n4)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 We’ll start with c = 1

UMBC CMSC 341 Asymptotic Analysis 40

n0 4n2 + 16n + 2 ≤ c*n4

0 2 > 0

1 22 > 1

2 50 > 16

3 86 > 81

4 130 < 256

Big O: Example

 So we can say that

 f(n) = 4n2 + 16n + 2 is O(n4)

 Big O is an upper bound

 The worst the algorithm could perform

 Does n4 seem high to you?

UMBC CMSC 341 Asymptotic Analysis 41

Big O: Example – n2

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n2)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 Let’s start with c = 10

UMBC CMSC 341 Asymptotic Analysis 42

n0 4n2 + 16n + 2 ≤ c*n2

0 2 > 0

1 22 > 10

2 50 > 40

3 86 > 90

Big O: Example – n2

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n2)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 Let’s start with c = 10

UMBC CMSC 341 Asymptotic Analysis 43

n0 4n2 + 16n + 2 ≤ c*n2

0 2 > 0

1 22 > 10

2 50 > 40

3 86 < 90

Big O: Example

 So we can more accurately say that

 f(n) = 4n2 + 16n + 2 is O(n2)

 Could f(n) = 4n2 + 16n + 2 is O(n) ever be true?

 Why not?

UMBC CMSC 341 Asymptotic Analysis 44

Big O:

Practice Examples

45

Big O: Example 1

 Code:

a = b;

++sum;

int y = Mystery(42);

 Complexity:

 Constant – O(c)

UMBC CMSC 341 Asymptotic Analysis 46

Big O: Example 2

 Code:
sum = 0;

for (i = 1; i <= n; i++) {

sum += n;

}

 Complexity:

 Linear – O(n)

UMBC CMSC 341 Asymptotic Analysis 47

Big O: Example 3

 Code:
sum1 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

sum1++;

}

}

 Complexity:

 Quadratic – O(n2)

UMBC CMSC 341 Asymptotic Analysis 48

Big O: Example 4

 Code:
sum2 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum2++;

}

}

 Complexity:

 Quadratic – O(n2)

UMBC CMSC 341 Asymptotic Analysis 49

how many times do
we execute this

statement?

1 + 2 + 3 + 4 + … + n-2 + n-1 + n

Expressing as a summation

 Can we express this as a summation?

 Yes!

 Does this have a known formula?

 Yes!

 What does this formula multiply out to?

 (n2 + n) / 2

 or O(n2)

UMBC CMSC 341 Asymptotic Analysis 50

 

n

i
i

1 2

)1(


nn

Other Geometric Formulas

 O(n3)

 O(n4)

 O(cn)

UMBC CMSC 341 Asymptotic Analysis 51

, where c ≠ 1

6

)12)(1(2

1


 

nnn
i

n

i

4

)1(223

1


 

nn
i

n

i

c

c
c

nin

i 







1

1)1(

0

Big O: Example 5

 Code:
sum3 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum3++; }

}

for (k = 0; k < n; k++) {

a[k] = k;

}

 Complexity:

 Quadratic – O(n2)

UMBC CMSC 341 Asymptotic Analysis 52

Big O: Example 6

 Code:
sum4 = 0;

for (k = 1; k <= n; k *= 2)

for (j = 1; j <= n; j++) {

sum4++;

}

 Complexity:

 O(n log n)

UMBC CMSC 341 Asymptotic Analysis 53

Big O: More Examples

 Square each element of an N x N matrix

 Printing the first and last row of an N x N

matrix

 Finding the smallest element in a sorted array

of N integers

 Printing all permutations of N distinct

elements

UMBC CMSC 341 Asymptotic Analysis 54

Big Omega (Ω) and Big Theta(Θ)

55

“Big” Notation (words)

 Big O describes an asymptotic upper bound

 The worst possible performance we can expect

 Big Ω describes an asymptotic lower bound

 The best possible performance we can expect

 Big Θ describes an asymptotically tight bound

 The best and worst running times can be

expressed with the same equation

UMBC CMSC 341 Asymptotic Analysis 56

“Big” Notation (equations)

 Big O describes an asymptotic upper bound

 f(n) is asymptotically less than or equal to g(n)

 Big Ω describes an asymptotic lower bound

 f(n) is asymptotically greater than or equal to g(n)

 Big Θ describes an asymptotically tight bound

 f(n) is asymptotically equal to g(n)

UMBC CMSC 341 Asymptotic Analysis 57

Big O and Big Omega Example

UMBC CMSC 341 Asymptotic Analysis 58

f(n)
4x2+16x+2

g(n)
x4

4*g(n)
x2

O(n4) Ω(n2)

Big Theta Example

UMBC CMSC 341 Asymptotic Analysis 59

f(n)
4x2+16x+2

10*g(n)
x2

4*g(n)
x2

O(n2) Ω(n2)

Θ(n2)

A Simple Example

 Say we write an algorithm that takes in an

array of numbers and returns the highest one

 What is the absolute fastest it can run?

 Linear time – Ω(n)

 What is the absolute slowest it can run?

 Linear time – O(n)

 Can this algorithm be tightly asymptotically bound?

 YES – so we can also say it’s Θ(n)

UMBC CMSC 341 Asymptotic Analysis 60

Proof by Induction

61

Proof by Induction

 The only way to prove that Big O will work

 As n becomes larger and larger numbers

 To prove F(n) for any positive integer n

1. Base case: prove F(1) is true

2. Hypothesis: Assume F(k) is true for any

k >= 1

3. Inductive: Prove the if F(k) is true, then

F(k+1) is true

UMBC CMSC 341 Asymptotic Analysis 62

Induction Example (Step 1)

 Show that for all n ≥ 1 :

1. Base case:

 n = 1

 (This is our n0)

UMBC CMSC 341 Asymptotic Analysis 63

6

)12)(1(2

1


 

nnn
i

n

i

6

)1)1(2)(11(121

1


 i

i

6

)3)(2(121

1
 i

i

6

621

1
 i

i

1
21

1
 i

i

Induction Example (Step 2)

 Show that for all n ≥ 1 :

2. Hypothesis:

 Assume that

holds for any n ≥ 1

UMBC CMSC 341 Asymptotic Analysis 64

6

)12)(1(2

1


 

nnn
i

n

i

6

)12)(1(2

1


 

nnn
i

n

i

Induction Example (Step 3)

 Show that for all n ≥ 1 :

3. Inductive:

 Prove that if F(k) is true (assumed),

the F(k+1) is also true

 We’ve already proved F(1) is true

 So proving this step will prove F(2) from F(1),

and F(3) from F(2), …, and F(k+1) from F(k)

UMBC CMSC 341 Asymptotic Analysis 65

6

)12)(1(2

1


 

nnn
i

n

i

Induction Example (Step 3)

UMBC CMSC 341 Asymptotic Analysis 66

6

)12)(1(2

1


 

nnn
i

n

i

2
2

1

21

1
)1( 




kii

k

i

k

i

2
21

1
)1(

6

)12)(1(








k

kkk
i

k

i

6

))1(6)12()(1(21

1








kkkk
i

k

i

6

)672)(1(221

1








kkk
i

k

i

6

)32)(2)(1(21

1








kkk
i

k

i 6

)1)1(2)(1)1)((1(21

1








kkk
i

k

i

