CMSC 341 Lecture 5 Asymptotic Analysis

Today's Topics

- Review
 - Mathematical properties
 - Proof by induction
- Program complexity
 - Growth functions
- Big O notation

Mathematical Properties

Why Review Mathematical Properties?

- You will be solving complex problems
 - That use division and power

- These mathematical properties will help you solve these problems more quickly
 - Exponents
 - Logarithms
 - Summations
 - Mathematical Series

Exponents

- Shorthand for multiplying a number by itself
 - Several times

Used in identifying sizes of memory

 Help to determine the most efficient way to write a program

Exponent Identities

$$x^{a}x^{b} = x^{a}y^{a} = (x^{a})^{b} = x^{(a-b)} = x^{(-a)} = x^{(-a)} = x^{(-a)}$$

 $x^{(a/b)} =$

Exponent Identities

$$x^{a}x^{b} = x^{(a+b)}$$
 $x^{a}y^{a} = (xy)^{a}$
 $(x^{a})^{b} = x^{(ab)}$
 $x^{(a-b)} = (x^{a})/(x^{b})$
 $x^{(-a)} = 1/(x^{a})$
 $x^{(a/b)} = (x^{a})^{\frac{1}{b}} = \sqrt[b]{x^{a}}$

Logarithms

- ALWAYS base 2 in Computer Science
 - Unless stated otherwise
- Used for:
 - Conversion between numbering systems
 - Determining the mathematical power needed
- Definition:
 - $\mathbf{n} = \log_{\mathbf{a}} \mathbf{x}$ if and only if $\mathbf{a}^{\mathbf{n}} = \mathbf{x}$

Logarithm Identities

```
log_b(1)
log_b(b)
log_b(x*y) =
log_b(x/y) =
log_b(x^n)
log_b(x)
```

Logarithm Identities

```
\log_b(1) = 0
log_b(b) = 1
\log_b(x*y) = \log_b(x) + \log_b(y)
\log_b(x/y) = \log_b(x) - \log_b(y)
\log_b(x^n) = n*\log_b(x)
\log_b(x) = \log_b(c) * \log_c(x)
           = \log_c(x) / \log_c(b)
```

Summations

- The addition of a sequence of numbers
 - Result is their sum or total

start at this value go to this value
$$\sum_{n=1}^{4} n$$
 what to sum

$$\sum_{n=1}^{6} 4n = 4(1) + 4(2) + 4(3) + 4(4) + 4(5) + 4(6)$$
$$= 4 + 8 + 12 + 16 + 20 + 24$$
$$= 84$$

Can break a function into several summations

$$\sum_{i=1}^{100} (4+3i) = \sum_{i=1}^{100} 4 + \sum_{i=1}^{100} 3i = \sum_{i=1}^{100} 4 + 3\left(\sum_{i=1}^{100} i\right)$$

Proof by Induction

Proof by Induction

- A proof by induction is just like an ordinary proof
 - In which every step must be justified
- However, it employs a neat trick:
 - You can prove a statement about an arbitrary number n by first proving
 - It is true when n is 1 and then
 - Assuming it is true for n=k and
 - Showing it is true for n=k+1

Proof by Induction Example

- Let's say you want to show that you can climb to the nth floor of a fire escape
- With induction, need to show that:
 - They can climb the ladder up to the fire escape (n = 0)
 - \Box They can climb the first flight of stairs (n = 1)
- Then we can show that you can climb the stairs from any level of the fire escape (n = k) to the next level (n = k + 1)

Program Complexity

What is Complexity?

- How many resources will it take to solve a problem of a given size?
 - Time (ms, seconds, minutes, years)
 - Space (kB, MB, GB, TB, PB)

 Expressed as a function of problem size (beyond some minimum size)

Increasing Complexity

How do requirements grow as size grows?

- Size of the problem
 - Number of elements to be handled
 - Size of thing to be operated on

Determining Complexity: Experimental

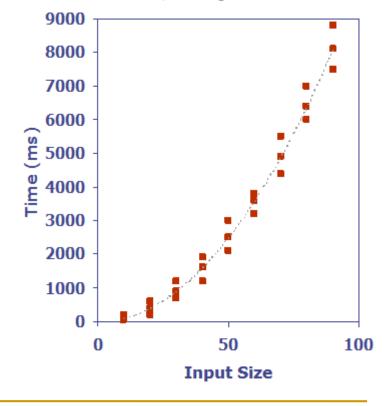
Write a program implementing the algorithm

Run the program with inputs of varying size

and composition

 Use a method like clock() to get an accurate measure of the actual running time

Plot the results



Limitations of Experimental Method

- What are some limitations of this approach?
- Must implement algorithm to be tested
 - May be difficult
- Results may not apply to all possible inputs
 - Only applies to inputs explicitly tested
- Comparing two algorithms is difficult
 - Requires same hardware and software

Determining Complexity: Analysis

- Theoretical analysis solves these problems
- Use a high-level description of the algorithm
 - Instead of an implementation
- Run time is a function of the input size, n
- Take into account all possible inputs
- Evaluation is independent of specific hardware or software
 - Including compiler optimization

Using Asymptotic Analysis

- For an algorithm:
 - With input size n
 - Define the run time as T(n)

- Purpose of asymptotic analysis is to examine:
 - The rate of growth of T(n)
 - As n grows larger and larger

Growth Functions

Seven Important Functions

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear ≈ n
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^2$
- Cubic $\approx n^3$
- Exponential $\approx 2^n$

Constant and Linear

- Constant
 - "c" is a constant value, like 1
 - \Box T(n) = c
 - Getting array element at known location
 - Any simple C++ statement (e.g. assignment)
- Linear
 - □ T(n) = cn [+ any lower order terms]
 - Finding particular element in array of size n
 - Sequential search
 - Trying on all of your n shirts

Quadratic and Polynomial

Quadratic

- \neg T(n) = cn² [+ any lower order terms]
- Sorting an array using bubble sort
- Trying all your n shirts with all your n pants

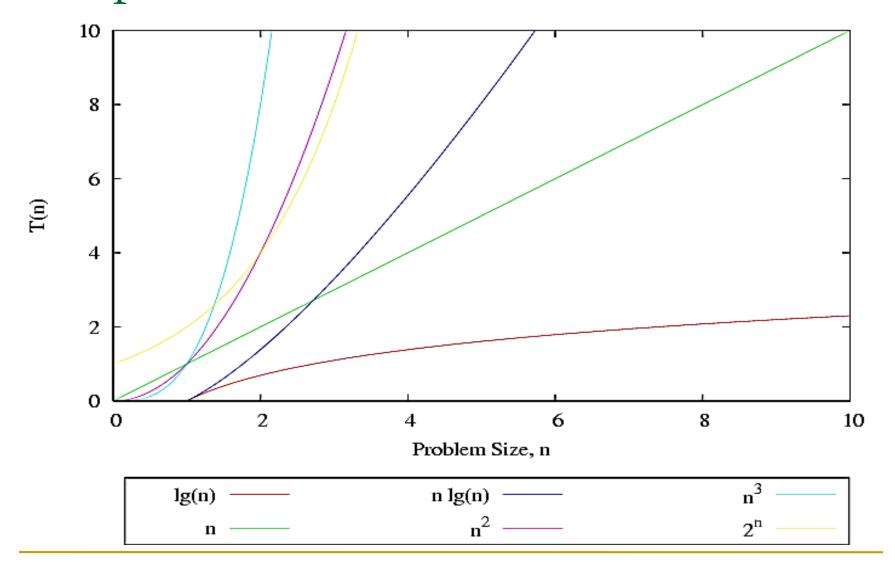
Polynomial

- \Box T(n) = cn^k [+ any lower order terms]
- Finding the largest element of a k-dimensional array
- Looking for maximum substrings in array

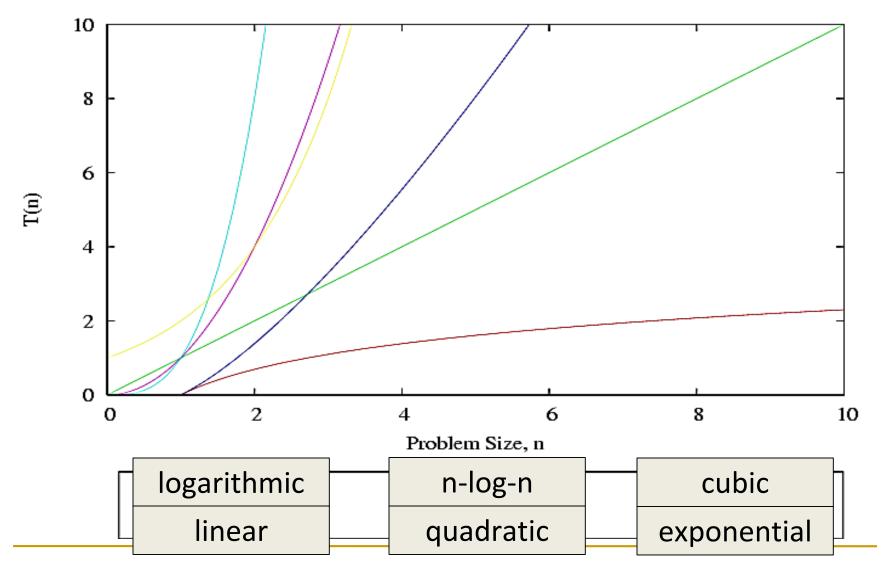
Exponential and Logarithmic

- Exponential
 - \Box T(n) = cⁿ [+ any lower order terms]
 - Constructing all possible orders of array elements
 - Towers of Hanoi (2ⁿ)
 - Recursively calculating nth Fibonacci number (2ⁿ)
- Logarithmic
 - □ T(n) = lg n [+ any lower order terms]
 - Finding a particular array element (binary search)
 - Algorithms that continually divide a problem in half

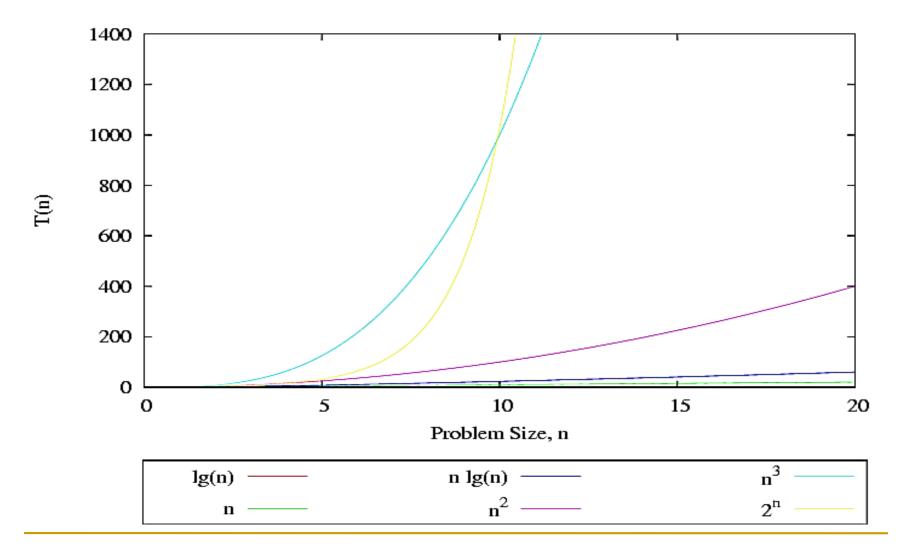
Graph of Growth Functions



Graph of Growth Functions



Expanded Growth Functions Graph



Asymptotic Analysis

Simplification

- We are only interested in the growth rate as an "order of magnitude"
 - As the problem grows really, really, really large

- We are not concerned with the fine details
 - Constant multipliers are dropped
 - If $T(n) = c*2^n$, we reduce it to $T(n) = 2^n$
 - Lower order terms are dropped
 - If $T(n) = n^4 + n^2$, we reduce it to $T(n) = n^4$

Three Cases of Analysis

- Best case
 - When input data minimizes the run time
 - An array that needs to be sorted is already in order
- Average case
 - The "run time efficiency" over all possible inputs
- Worst case
 - When input data maximizes the run time
 - Most adversarial data possible

Analysis Example: Mileage

- How much gas does it take to go 20 miles?
- Best case
 - Straight downhill, wind at your back
- Average case
 - "Average" terrain
- Worst case
 - Winding uphill gravel road, inclement weather

Analysis Example: Sequential Search

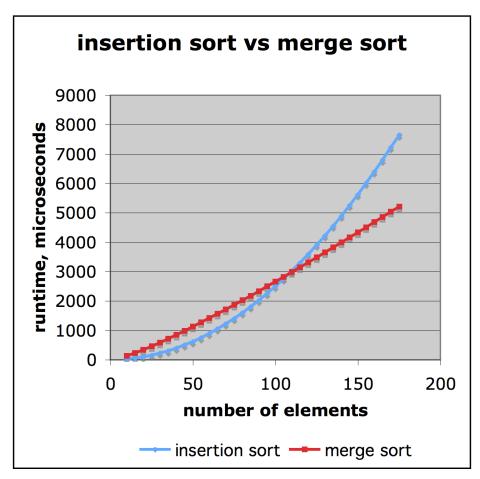
- Consider sequential search on an unsorted array of length n, what is the time complexity?
- Best case

Worst case

Average case

Comparison of Two Algorithms

- Insertion sort:
 - \square $(n^2)/4$
- Merge sort:
 - □ 2nlgn
- n = 1,000,000
- Million ops per second
 - Merge takes 40 secs
 - Insert takes 70 hours



Source: Matt Stallmann, Goodrich and Tamassia slides

Big O Notation

What is Big O Notation?

- Big O notation has a special meaning in Computer Science
 - Used to describe the complexity (or performance) of an algorithm

- Big O describes the worst-case scenario
 - Big Omega (Ω) describes the best-case
 - Big Theta (Θ) is used when the best and worst case scenarios are the same

Big O Definition

- We say that f(n) is O(g(n)) if
 - There is a real constant c > 0
 - □ And an integer constant $n_0 \ge 1$
- Such that
 - $\neg f(n) \le c^*g(n)$, for $n \ge n_0$
- Let's do an example
 - Taken from https://youtu.be/ei-A_wy5Yxw

Big O: Example $- n^4$

- We have $f(n) = 4n^2 + 16n + 2$
- Let's test if f(n) is $O(n^4)$
 - □ Remember, we want to see $f(n) \le c^*g(n)$, for $n \ge n_0$
- We'll start with c = 1

n_0	4n² + 16n + 2	<u> </u>	c*n ⁴
0			
1			
2			
3			-
4			

Big O: Example – n⁴

- We have $f(n) = 4n^2 + 16n + 2$
- Let's test if f(n) is $O(n^4)$
 - □ Remember, we want to see $f(n) \le c^*g(n)$, for $n \ge n_0$
- We'll start with c = 1

n _o	4n ² + 16n + 2	<u> </u>	c*n ⁴
0	2	\	0
1	22	>	1
2	50	>	16
3	86	>	81
4	130	\	256

- So we can say that
 - $f(n) = 4n^2 + 16n + 2$ is $O(n^4)$

- Big O is an upper bound
 - The worst the algorithm could perform

■ Does n⁴ seem high to you?

Big O: Example $- n^2$

- We have $f(n) = 4n^2 + 16n + 2$
- Let's test if f(n) is $O(n^2)$
 - □ Remember, we want to see $f(n) \le c^*g(n)$, for $n \ge n_0$
- Let's start with c = 10

n_0	4n² + 16n + 2	≤	c*n²
0			
1			
2			
3			

Big O: Example $- n^2$

- We have $f(n) = 4n^2 + 16n + 2$
- Let's test if f(n) is $O(n^2)$
 - □ Remember, we want to see $f(n) \le c^*g(n)$, for $n \ge n_0$
- Let's start with c = 10

n_0	4n² + 16n + 2	<u> </u>	c*n²
0	2	^	0
1	22	^	10
2	50	>	40
3	86	'	90

- So we can more accurately say that
 - $f(n) = 4n^2 + 16n + 2$ is $O(n^2)$

- Could $f(n) = 4n^2 + 16n + 2$ is O(n) ever be true?
 - Why not?

Big O: Practice Examples

```
a = b;
++sum;
int y = Mystery( 42 );
```

- Complexity:
 - □ Constant O(c)

```
sum = 0;
for (i = 1; i <= n; i++) {
  sum += n;
}</pre>
```

- Complexity:
 - Linear O(n)

```
sum1 = 0;
for (i = 1; i <= n; i++) {
  for (j = 1; j <= n; j++) {
    sum1++;
  }
}</pre>
```

- Complexity:
 - Quadratic O(n²)

Code:

```
sum2 = 0;
for (i = 1; i <= n; i++) {
  for (j = 1; j <= i; j++) {
    sum2++;
    how many times do
    we execute this
    statement?</pre>
```

1 + 2 + 3 + 4 + ... + n-2 + n-1 + n

- Complexity:
 - Quadratic O(n²)

Expressing as a summation

- Can we express this as a summation?
 - Yes!

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Does this have a known formula?
 - Yes!
- What does this formula multiply out to?
 - $(n^2 + n) / 2$
 - \Box or $O(n^2)$

Other Geometric Formulas

• O(n³)
$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

O(n⁴)
$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

• O(cⁿ)
$$\sum_{i=0}^{n} c^{i} = \frac{1 - c^{(n+1)}}{1 - c}, \text{ where } c \neq 1$$

```
sum3 = 0;
for (i = 1; i <= n; i++) {
  for (j = 1; j <= i; j++) {
    sum3++; }
}
for (k = 0; k < n; k++) {
  a[k] = k;
}</pre>
```

- Complexity:
 - Quadratic O(n²)

```
sum4 = 0;
for (k = 1; k <= n; k *= 2)
  for (j = 1; j <= n; j++) {
    sum4++;
}</pre>
```

- Complexity:
 - □ O(n log n)

Big O: More Examples

- Square each element of an N x N matrix
- Printing the first and last row of an N x N matrix
- Finding the smallest element in a sorted array of N integers
- Printing all permutations of N distinct elements

Big Omega (Ω) and Big Theta(Θ)

"Big" Notation (words)

- Big O describes an asymptotic upper bound
 - The worst possible performance we can expect

- Big Ω describes an asymptotic lower bound
 - The best possible performance we can expect

- Big Θ describes an asymptotically tight bound
 - The best and worst running times can be expressed with the same equation

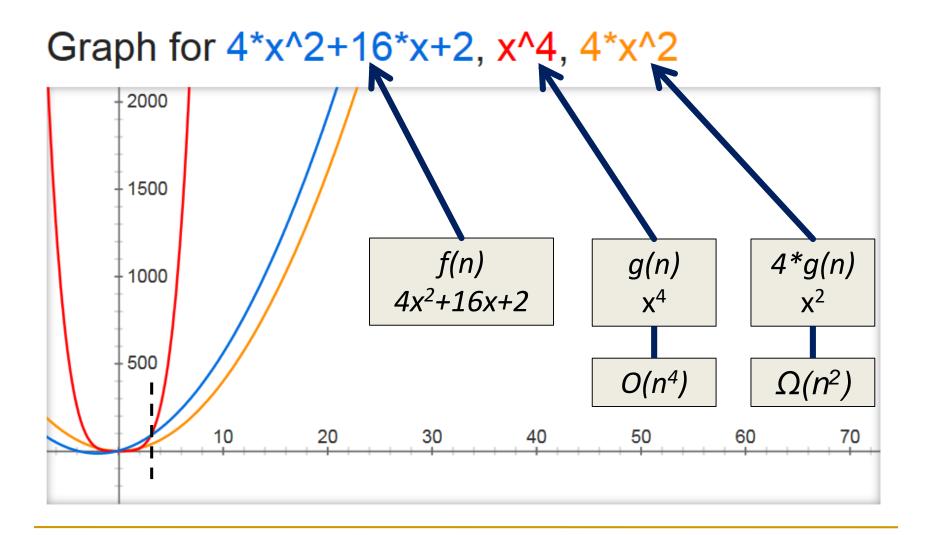
"Big" Notation (equations)

- Big O describes an asymptotic upper bound
 - \neg f(n) is asymptotically **less than or equal to** g(n)

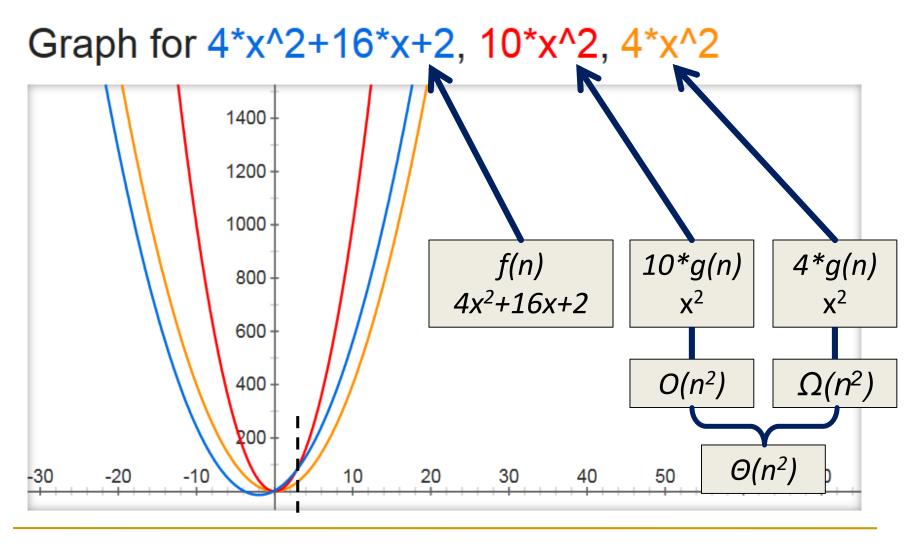
- Big Ω describes an asymptotic lower bound
 - $\neg f(n)$ is asymptotically **greater than or equal to** g(n)

- Big Θ describes an asymptotically tight bound
 - $\neg f(n)$ is asymptotically **equal to** g(n)

Big O and Big Omega Example



Big Theta Example



A Simple Example

- Say we write an algorithm that takes in an array of numbers and returns the highest one
 - What is the absolute fastest it can run?
 - Linear time Ω(n)
 - What is the absolute slowest it can run?
 - Linear time O(n)
 - Can this algorithm be tightly asymptotically bound?
 - YES so we can also say it's Θ(n)

Proof by Induction

Proof by Induction

- The only way to prove that Big O will work
 - As n becomes larger and larger numbers

- To prove F(n) for any positive integer n
 - 1. Base case: prove F(1) is true
 - 2. <u>Hypothesis</u>: Assume F(k) is true for anyk >= 1
 - 3. Inductive: Prove the if F(k) is true, then F(k+1) is true

Induction Example (Step 1)

• Show that for all $n \ge 1$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

1. Base case:

- \square n=1
- \Box (This is our n_0)

$$\sum_{i=1}^{1} i^2 = \frac{1(1+1)(2(1)+1)}{6}$$

$$\sum_{i=1}^{1} i^2 = \frac{1(2)(3)}{6}$$

$$\sum_{i=1}^{1} i^2 = \frac{6}{6}$$

$$\sum_{i=1}^{1} i^2 = 1$$

Induction Example (Step 2)

• Show that for all $n \ge 1$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

2. Hypothesis:

□ Assume that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

holds for any $n \ge 1$

Induction Example (Step 3)

• Show that for all $n \ge 1$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

3. Inductive:

- Prove that if F(k) is true (assumed), the F(k+1) is also true
- \square We've already proved F(1) is true
- So proving this step will prove F(2) from F(1), and F(3) from F(2), ..., and F(k+1) from F(k)

Induction Example (Step 3)

$$\sum_{i=1}^{k+1} i^{2} = \sum_{i=1}^{k} i^{2} + (k+1)^{2}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k(2k+1)+6(k+1))}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(2k^{2}+7k+6)}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$