
CMSC 341

Lecture 5 Asymptotic Analysis

Based on slides from Prof; Gibson, previous iterations of CMSC 341, and textbook



Today’s Topics

 Review

 Mathematical properties

 Proof by induction

 Program complexity

 Growth functions

 Big O notation
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Mathematical Properties
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Why Review Mathematical Properties?

 You will be solving complex problems

 That use division and power

 These mathematical properties will help you 

solve these problems more quickly

 Exponents

 Logarithms

 Summations

 Mathematical Series
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Exponents

 Shorthand for multiplying a number by itself

 Several times

 Used in identifying sizes of memory

 Help to determine the most efficient way to 

write a program
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Exponent Identities

xaxb = x(a+b)

xaya = (xy)a

(xa)b = x(ab)

x(a-b) = (xa)/(xb)

x(-a) = 1/(xa)

x(a/b) = (xa)  =  √xa
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Logarithms

 ALWAYS base 2 in Computer Science

 Unless stated otherwise

 Used for:

 Conversion between numbering systems

 Determining the mathematical power needed

 Definition:

 n = logax if and only if an = x
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Logarithm Identities

logb(1) = 0

logb(b) = 1

logb(x*y) = logb(x) + logb(y)

logb(x/y) = logb(x) - logb(y)

logb(x
n) = n*logb(x)

logb(x) = logb(c) * logc(x) 

= logc(x) / logc(b)
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Summations

 The addition of a sequence of numbers

 Result is their sum or total

 Can break a function into several summations
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Proof by Induction
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Proof by Induction

 A proof by induction is just like an ordinary 

proof

 In which every step must be justified

 However, it employs a neat trick:

 You can prove a statement about an arbitrary 

number n by first proving 

 It is true when n is 1 and then

Assuming it is true for n=k and 

Showing it is true for n=k+1
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Proof by Induction Example

 Let’s say you want to show that you can 

climb to the nth floor of a fire escape

 With induction, need to show that:

 They can climb the ladder up to the fire 

escape (n = 0)

 They can climb the first flight of stairs (n = 1)

 Then we can show that you can climb the 

stairs from any level of the fire escape 

(n = k) to the next level (n = k + 1)
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Program Complexity
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What is Complexity?

 How many resources will it take to solve a 

problem of a given size?

 Time (ms, seconds, minutes, years)

 Space (kB, MB, GB, TB, PB)

 Expressed as a function of problem size 

(beyond some minimum size)
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Increasing Complexity

 How do requirements grow as size grows?

 Size of the problem

 Number of elements to be handled

 Size of thing to be operated on
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Determining Complexity: Experimental 

 Write a program implementing the algorithm

 Run the program with inputs of varying size 

and composition

 Use a method like clock() 

to get an accurate 

measure of the actual 

running time

 Plot the results
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Limitations of Experimental Method

 What are some limitations of this approach?

 Must implement algorithm to be tested

 May be difficult

 Results may not apply to all possible inputs

 Only applies to inputs explicitly tested

 Comparing two algorithms is difficult

 Requires same hardware and software
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Determining Complexity: Analysis

 Theoretical analysis solves these problems

 Use a high-level description of the algorithm

 Instead of an implementation

 Run time is a function of the input size, n

 Take into account all possible inputs

 Evaluation is independent of specific 

hardware or software

 Including compiler optimization
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Using Asymptotic Analysis

 For an algorithm:

 With input size n

 Define the run time as T(n)

 Purpose of asymptotic analysis is to 

examine:

 The rate of growth of T(n)

 As n grows larger and larger
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Growth Functions
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Seven Important Functions

 Constant  1

 Logarithmic  log n

 Linear  n

 N-Log-N  n log n

 Quadratic  n2

 Cubic  n3

 Exponential  2n
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Constant and Linear

 Constant

 T(n) = c

 Getting array element at known location 

 Any simple C++ statement (e.g. assignment)

 Linear

 T(n) = cn [+ any lower order terms]

 Finding particular element in array of size n

 Sequential search

 Trying on all of your n shirts
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“c” is a constant value, like 1



Quadratic and Polynomial

 Quadratic

 T(n) = cn2 [ + any lower order terms]

 Sorting an array using bubble sort

 Trying all your n shirts with all your n pants

 Polynomial

 T(n) = cnk [ + any lower order terms]

 Finding the largest element of a k-dimensional array

 Looking for maximum substrings in array
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Exponential and Logarithmic

 Exponential

 T(n) = cn [ + any lower order terms]

 Constructing all possible orders of array elements

 Towers of Hanoi (2n)

 Recursively calculating nth Fibonacci number (2n)

 Logarithmic

 T(n) = lg n [ + any lower order terms]

 Finding a particular array element (binary search)

 Algorithms that continually divide a problem in half
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Graph of Growth Functions

UMBC CMSC 341 Asymptotic Analysis 27



Graph of Growth Functions
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Expanded Growth Functions Graph
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Asymptotic Analysis
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Simplification

 We are only interested in the growth rate as 

an “order of magnitude”

 As the problem grows really, really, really large

 We are not concerned with the fine details

 Constant multipliers are dropped

 If T(n) = c*2n, we reduce it to T(n) = 2n

 Lower order terms are dropped

 If T(n) = n4 + n2, we reduce it to T(n) = n4
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Three Cases of Analysis 

 Best case

 When input data minimizes the run time

 An array that needs to be sorted is already in order

 Average case

 The “run time efficiency” over all possible inputs

 Worst case

 When input data maximizes the run time

 Most adversarial data possible
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Analysis Example: Mileage

 How much gas does it take to go 20 miles?

 Best case

 Straight downhill, wind at your back

 Average case

 “Average” terrain

 Worst case

 Winding uphill gravel road, inclement weather
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Analysis Example: Sequential Search

 Consider sequential search on an unsorted 

array of length n, what is the time complexity?

 Best case

 Worst case

 Average case
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Comparison of Two Algorithms

 Insertion sort:

 (n2)/4

 Merge sort:

 2nlgn

 n = 1,000,000

 Million ops per second

 Merge takes 40 secs

 Insert takes 70 hours
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Big O Notation
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What is Big O Notation?

 Big O notation has a special meaning in 

Computer Science

 Used to describe the complexity (or 

performance) of an algorithm

 Big O describes the worst-case scenario

 Big Omega (Ω) describes the best-case

 Big Theta (Θ) is used when the best and 

worst case scenarios are the same
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Big O Definition

 We say that f(n) is O(g(n)) if

 There is a real constant c > 0

 And an integer constant n0 ≥ 1

 Such that

 f(n) ≤ c*g(n), for n ≥ n0

 Let’s do an example

 Taken from https://youtu.be/ei-A_wy5Yxw
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Big O: Example – n4

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n4)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 We’ll start with c = 1
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Big O: Example

 So we can say that 

 f(n) = 4n2 + 16n + 2 is O(n4)

 Big O is an upper bound

 The worst the algorithm could perform

 Does n4 seem high to you?
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Big O: Example – n2

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n2)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 Let’s start with c = 10
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Big O: Example

 So we can more accurately say that

 f(n) = 4n2 + 16n + 2 is O(n2)

 Could f(n) = 4n2 + 16n + 2 is O(n) ever be true?

 Why not?
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Big O:

Practice Examples
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Big O: Example 1

 Code:

a = b;

++sum;

int y = Mystery( 42 );

 Complexity:

 Constant – O(c)
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Big O: Example 2

 Code:
sum = 0;

for (i = 1; i <= n; i++) {

sum += n;

}

 Complexity:

 Linear – O(n)
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Big O: Example 3 

 Code:
sum1 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

sum1++;

}

}

 Complexity:

 Quadratic – O(n2)
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Big O: Example 4 

 Code:
sum2 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum2++;

}

}

 Complexity:

 Quadratic – O(n2)
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how many times do 
we execute this 

statement?

1 + 2 + 3 + 4 + … + n-2 + n-1 + n



Expressing as a summation

 Can we express this as a summation?

 Yes!

 Does this have a known formula?

 Yes!

 What does this formula multiply out to?

 (n2 + n) / 2

 or O(n2)
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Other Geometric Formulas

 O(n3)

 O(n4)

 O(cn)
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Big O: Example 5 

 Code:
sum3 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum3++; }

}

for (k = 0; k < n; k++) {

a[ k ] = k;

}

 Complexity:

 Quadratic – O(n2)
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Big O: Example 6

 Code:
sum4 = 0;

for (k = 1; k <= n; k *= 2)

for (j = 1; j <= n; j++) {

sum4++;

}

 Complexity:

 O(n log n)
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Big O: More Examples

 Square each element of an N x N matrix

 Printing the first and last row of an N x N 

matrix

 Finding the smallest element in a sorted array 

of N integers

 Printing all permutations of N distinct 

elements
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Big Omega (Ω) and Big Theta(Θ)
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“Big” Notation (words)

 Big O describes an asymptotic upper bound

 The worst possible performance we can expect

 Big Ω describes an asymptotic lower bound

 The best possible performance we can expect

 Big Θ describes an asymptotically tight bound

 The best and worst running times can be 

expressed with the same equation
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“Big” Notation (equations) 

 Big O describes an asymptotic upper bound

 f(n) is asymptotically less than or equal to g(n)

 Big Ω describes an asymptotic lower bound

 f(n) is asymptotically greater than or equal to g(n)

 Big Θ describes an asymptotically tight bound

 f(n) is asymptotically equal to g(n)
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Big O and Big Omega Example
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f(n)
4x2+16x+2

g(n)
x4

4*g(n)
x2

O(n4) Ω(n2)



Big Theta Example
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f(n)
4x2+16x+2

10*g(n)
x2

4*g(n)
x2

O(n2) Ω(n2)

Θ(n2)



A Simple Example

 Say we write an algorithm that takes in an 

array of numbers and returns the highest one

 What is the absolute fastest it can run?

 Linear time – Ω(n)

 What is the absolute slowest it can run?

 Linear time – O(n)

 Can this algorithm be tightly asymptotically bound?

 YES – so we can also say it’s Θ(n)
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Proof by Induction
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Proof by Induction

 The only way to prove that Big O will work

 As n becomes larger and larger numbers

 To prove F(n) for any positive integer n

1. Base case: prove F(1) is true

2. Hypothesis: Assume F(k) is true for any 

k >= 1

3. Inductive: Prove the if F(k) is true, then

F(k+1) is true
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Induction Example (Step 1)

 Show that for all n ≥ 1 :

1. Base case:

 n = 1

 (This is our n0)
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Induction Example (Step 2)

 Show that for all n ≥ 1 :

2. Hypothesis:

 Assume that 

holds for any n ≥ 1
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Induction Example (Step 3)

 Show that for all n ≥ 1 :

3. Inductive:

 Prove that if F(k) is true (assumed), 

the F(k+1) is also true

 We’ve already proved F(1) is true

 So proving this step will prove F(2) from F(1), 

and F(3) from F(2), …, and F(k+1) from F(k)
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Induction Example (Step 3)
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